Gigascience_Fusions_demonstration_STS26T-Gent_Workflow

proteomics-neoantigen-1-fusion-database-generation/main-workflow

Author(s)
GalaxyP
version Version
1
last_modification Last updated
Jan 14, 2025
license License
GPL-3.0-or-later
galaxy-tags Tags
name:neoantigen

Features
Tutorial
hands_on Neoantigen 1: Fusion-Database-Generation

Workflow Testing
Tests: ❌
Results: Not yet automated
FAIRness purl PURL
https://gxy.io/GTN:W00298
RO-Crate logo with flask Download Workflow RO-Crate Workflowhub cloud with gears logo View on (Dev) WorkflowHub
Launch in Tutorial Mode question
galaxy-download Download
flowchart TD
  0["ℹ️ Input Dataset\nRNA-Seq_Reads_1"];
  style 0 stroke:#2c3143,stroke-width:4px;
  1["ℹ️ Input Dataset\nRNA-Seq_Reads_2"];
  style 1 stroke:#2c3143,stroke-width:4px;
  2["ℹ️ Input Dataset\nhuman_reference_genome_annotation.gtf"];
  style 2 stroke:#2c3143,stroke-width:4px;
  3["ℹ️ Input Dataset\nhuman_reference_genome.fasta"];
  style 3 stroke:#2c3143,stroke-width:4px;
  4["Arriba-Get-Filters"];
  bdb7b8fe-ad19-44b0-8824-c930809543eb["Output\nArriba-Get-Filters_protein_domains"];
  4 --> bdb7b8fe-ad19-44b0-8824-c930809543eb;
  style bdb7b8fe-ad19-44b0-8824-c930809543eb stroke:#2c3143,stroke-width:4px;
  d19553ea-c199-47b1-ad18-f7197de66fc7["Output\nArriba-Get-Filters_cytobands"];
  4 --> d19553ea-c199-47b1-ad18-f7197de66fc7;
  style d19553ea-c199-47b1-ad18-f7197de66fc7 stroke:#2c3143,stroke-width:4px;
  02a9718d-0153-4bf8-b7b9-17826109ede7["Output\nArriba-Get-Filters_blacklist"];
  4 --> 02a9718d-0153-4bf8-b7b9-17826109ede7;
  style 02a9718d-0153-4bf8-b7b9-17826109ede7 stroke:#2c3143,stroke-width:4px;
  75ae6bd6-5b30-4af1-bc91-2f2c798a44ef["Output\nArriba-Get-Filters_known_fusions"];
  4 --> 75ae6bd6-5b30-4af1-bc91-2f2c798a44ef;
  style 75ae6bd6-5b30-4af1-bc91-2f2c798a44ef stroke:#2c3143,stroke-width:4px;
  5["Uncompressed-RNA-Seq-forward-reads"];
  0 -->|output| 5;
  ad7de653-861f-4fe5-961b-0ec2bd2485dc["Output\nUncompressed-RNA-Seq-forward-reads"];
  5 --> ad7de653-861f-4fe5-961b-0ec2bd2485dc;
  style ad7de653-861f-4fe5-961b-0ec2bd2485dc stroke:#2c3143,stroke-width:4px;
  6["Uncompressed-RNA-Seq-reverse-reads"];
  1 -->|output| 6;
  30fe35ba-5af2-4f36-ab8a-7f0099253882["Output\nUncompressed-RNA-Seq-reverse-reads"];
  6 --> 30fe35ba-5af2-4f36-ab8a-7f0099253882;
  style 30fe35ba-5af2-4f36-ab8a-7f0099253882 stroke:#2c3143,stroke-width:4px;
  7["RNA_STAR"];
  2 -->|output| 7;
  5 -->|output1| 7;
  6 -->|output1| 7;
  8002eb14-9ce0-4767-8e64-ad5d8af17f25["Output\nRNA_STAR_mapped_reads"];
  7 --> 8002eb14-9ce0-4767-8e64-ad5d8af17f25;
  style 8002eb14-9ce0-4767-8e64-ad5d8af17f25 stroke:#2c3143,stroke-width:4px;
  8["Arriba"];
  4 -->|blacklist| 8;
  2 -->|output| 8;
  3 -->|output| 8;
  7 -->|mapped_reads| 8;
  4 -->|known_fusions| 8;
  4 -->|protein_domains| 8;
  4 -->|cytobands| 8;
  4cb6fdb6-b4c5-47b4-9dca-3a05a7a26c74["Output\nArriba-Fusions-tsv"];
  8 --> 4cb6fdb6-b4c5-47b4-9dca-3a05a7a26c74;
  style 4cb6fdb6-b4c5-47b4-9dca-3a05a7a26c74 stroke:#2c3143,stroke-width:4px;
  9["Reformating Fusion data"];
  8 -->|fusions_tsv| 9;
  a8817c07-800d-4588-8c87-18ab611f85a8["Output\nReformated_Fusion_data"];
  9 --> a8817c07-800d-4588-8c87-18ab611f85a8;
  style a8817c07-800d-4588-8c87-18ab611f85a8 stroke:#2c3143,stroke-width:4px;
  10["Table_generation_from_Fusion_data"];
  9 -->|outfile| 10;
  ab3ad7b0-6f43-4f0f-9e0f-758c721a03f0["Output\nTable_generation_from_Fusion_data"];
  10 --> ab3ad7b0-6f43-4f0f-9e0f-758c721a03f0;
  style ab3ad7b0-6f43-4f0f-9e0f-758c721a03f0 stroke:#2c3143,stroke-width:4px;
  11["Converting_Tabular_to_Fasta"];
  10 -->|output| 11;
  e21178f2-6a4a-4174-9660-1af15ff7dbb4["Output\nConverting_Tabular_to_Fasta"];
  11 --> e21178f2-6a4a-4174-9660-1af15ff7dbb4;
  style e21178f2-6a4a-4174-9660-1af15ff7dbb4 stroke:#2c3143,stroke-width:4px;
  12["Arriba-Fusion-Database"];
  11 -->|output| 12;
  be2983fd-4ddf-4593-8b8d-933393eac469["Output\nArriba-Fusion-Database"];
  12 --> be2983fd-4ddf-4593-8b8d-933393eac469;
  style be2983fd-4ddf-4593-8b8d-933393eac469 stroke:#2c3143,stroke-width:4px;

Inputs

Input Label
Input dataset RNA-Seq_Reads_1
Input dataset RNA-Seq_Reads_2
Input dataset human_reference_genome_annotation.gtf
Input dataset human_reference_genome.fasta

Outputs

From Output Label
toolshed.g2.bx.psu.edu/repos/iuc/arriba_get_filters/arriba_get_filters/2.4.0+galaxy1 Arriba Get Filters Arriba-Get-Filters
CONVERTER_gz_to_uncompressed Convert compressed file to uncompressed. Uncompressed-RNA-Seq-forward-reads
CONVERTER_gz_to_uncompressed Convert compressed file to uncompressed. Uncompressed-RNA-Seq-reverse-reads
toolshed.g2.bx.psu.edu/repos/iuc/rgrnastar/rna_star/2.7.10b+galaxy4 RNA STAR RNA_STAR
toolshed.g2.bx.psu.edu/repos/iuc/arriba/arriba/2.4.0+galaxy1 Arriba Arriba
toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_awk_tool/1.1.2 Text reformatting Reformating Fusion data
toolshed.g2.bx.psu.edu/repos/iuc/query_tabular/query_tabular/3.3.1 Query Tabular Table_generation_from_Fusion_data
toolshed.g2.bx.psu.edu/repos/devteam/tabular_to_fasta/tab2fasta/1.1.1 Tabular-to-FASTA Converting_Tabular_to_Fasta
toolshed.g2.bx.psu.edu/repos/galaxyp/regex_find_replace/regex1/1.0.3 Regex Find And Replace Arriba-Fusion-Database

Tools

Tool Links
CONVERTER_gz_to_uncompressed
toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_awk_tool/1.1.2 View in ToolShed
toolshed.g2.bx.psu.edu/repos/devteam/tabular_to_fasta/tab2fasta/1.1.1 View in ToolShed
toolshed.g2.bx.psu.edu/repos/galaxyp/regex_find_replace/regex1/1.0.3 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/arriba/arriba/2.4.0+galaxy1 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/arriba_get_filters/arriba_get_filters/2.4.0+galaxy1 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/query_tabular/query_tabular/3.3.1 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/rgrnastar/rna_star/2.7.10b+galaxy4 View in ToolShed

To use these workflows in Galaxy you can either click the links to download the workflows, or you can right-click and copy the link to the workflow which can be used in the Galaxy form to import workflows.

Importing into Galaxy

Below are the instructions for importing these workflows directly into your Galaxy server of choice to start using them!
Hands-on: Importing a workflow
  • Click on Workflow on the top menu bar of Galaxy. You will see a list of all your workflows.
  • Click on galaxy-upload Import at the top-right of the screen
  • Provide your workflow
    • Option 1: Paste the URL of the workflow into the box labelled “Archived Workflow URL”
    • Option 2: Upload the workflow file in the box labelled “Archived Workflow File”
  • Click the Import workflow button

Below is a short video demonstrating how to import a workflow from GitHub using this procedure:

Video: Importing a workflow from URL

Version History

Version Commit Time Comments
1 6e4ce4916 2024-11-14 15:41:21 Made sure the order is right

For Admins

Installing the workflow tools

wget https://training.galaxyproject.org/training-material/topics/proteomics/tutorials/neoantigen-1-fusion-database-generation/workflows/main_workflow.ga -O workflow.ga
workflow-to-tools -w workflow.ga -o tools.yaml
shed-tools install -g GALAXY -a API_KEY -t tools.yaml
workflow-install -g GALAXY -a API_KEY -w workflow.ga --publish-workflows