Workflows
These workflows are associated with PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis
To use these workflows in Galaxy you can either click the links to download the workflows, or you can right-click and copy the link to the workflow which can be used in the Galaxy form to import workflows.
papaa@0.1.9_PI3K_OG_model_tutorial
Last updated May 6, 2021
Launch in Tutorial Mode
License:
None Specified, defaults to
CC-BY-4.0
Tests: ❌
Results: Not yet automated
flowchart TD 0["ℹ️ Input Dataset\npancan_rnaseq_freeze.tsv"]; style 0 stroke:#2c3143,stroke-width:4px; 1["ℹ️ Input Dataset\npancan_mutation_freeze.tsv"]; style 1 stroke:#2c3143,stroke-width:4px; 10["ℹ️ Input Dataset\nGSE69822_pi3k_sign.txt"]; style 10 stroke:#2c3143,stroke-width:4px; 11["ℹ️ Input Dataset\nGSE69822_pi3k_trans.csv"]; style 11 stroke:#2c3143,stroke-width:4px; 12["ℹ️ Input Dataset\nGDSC_CCLE_common_mut_cnv_binary.tsv.gz"]; style 12 stroke:#2c3143,stroke-width:4px; 13["ℹ️ Input Dataset\nccle_rnaseq_genes_rpkm_20180929_mod.tsv.gz"]; style 13 stroke:#2c3143,stroke-width:4px; 14["ℹ️ Input Dataset\nGDSC_EXP_CCLE_converted_name.tsv.gz"]; style 14 stroke:#2c3143,stroke-width:4px; 15["ℹ️ Input Dataset\nCCLE_MUT_CNA_AMP_DEL_binary_Revealer.tsv"]; style 15 stroke:#2c3143,stroke-width:4px; 16["ℹ️ Input Dataset\ncompounds_of_interest.txt"]; style 16 stroke:#2c3143,stroke-width:4px; 17["ℹ️ Input Dataset\ncosmic_cancer_classification.tsv"]; style 17 stroke:#2c3143,stroke-width:4px; 18["ℹ️ Input Dataset\npath_rtk_ras_pi3k_genes.txt"]; style 18 stroke:#2c3143,stroke-width:4px; 19["PAPAA: PanCancer classifier"]; 17 -->|output| 19; 3 -->|output| 19; 2 -->|output| 19; 1 -->|output| 19; 4 -->|output| 19; 5 -->|output| 19; 0 -->|output| 19; 2["ℹ️ Input Dataset\ncopy_number_loss_status.tsv"]; style 2 stroke:#2c3143,stroke-width:4px; 20["PAPAA: PanCancer within disease analysis"]; 17 -->|output| 20; 3 -->|output| 20; 2 -->|output| 20; 1 -->|output| 20; 4 -->|output| 20; 5 -->|output| 20; 0 -->|output| 20; 21["PAPAA: PanCancer apply weights"]; 17 -->|output| 21; 3 -->|output| 21; 2 -->|output| 21; 1 -->|output| 21; 4 -->|output| 21; 5 -->|output| 21; 19 -->|classifier_coefficients| 21; 19 -->|classifier_summary| 21; 0 -->|output| 21; 22["PAPAA: PanCancer external sample status prediction"]; 19 -->|classifier_summary| 22; 11 -->|output| 22; 19 -->|classifier_coefficients| 22; 10 -->|output| 22; 23["PAPAA: PanCancer compare within models"]; 19 -->|classifier_coefficients| 23; 19 -->|classifier_summary| 23; 20 -->|classifier_coefficients| 23; 20 -->|classifier_summary| 23; 24["PAPAA: PanCancer visualize decisions"]; 21 -->|classifier_decisions| 24; 25["PAPAA: PanCancer alternative genes pathwaymapper"]; 21 -->|classifier_decisions| 25; 3 -->|output| 25; 2 -->|output| 25; 1 -->|output| 25; 5 -->|output| 25; 18 -->|output| 25; 26["PAPAA: PanCancer map mutation class"]; 21 -->|classifier_decisions| 26; 3 -->|output| 26; 2 -->|output| 26; 6 -->|output| 26; 18 -->|output| 26; 27["PAPAA: PanCancer pathway count heatmaps"]; 25 -->|all_gene_metric_ranks| 27; 21 -->|classifier_decisions| 27; 17 -->|output| 27; 3 -->|output| 27; 2 -->|output| 27; 1 -->|output| 27; 4 -->|output| 27; 5 -->|output| 27; 18 -->|output| 27; 25 -->|pathway_metrics_pathwaymapper| 27; 0 -->|output| 27; 28["PAPAA: PanCancer targene summary figures"]; 25 -->|all_gene_metric_ranks| 28; 19 -->|classifier_summary| 28; 26 -->|mutation_classification_scores| 28; 19 -->|classifier_coefficients| 28; 27 -->|path_events_per_sample| 28; 19 -->|summary_counts| 28; 29["PAPAA: PanCancer targene cell line predictions"]; 28 -->|amino_acid_mutation_scores| 29; 7 -->|output| 29; 15 -->|output| 29; 13 -->|output| 29; 19 -->|classifier_summary| 29; 8 -->|output| 29; 9 -->|output| 29; 12 -->|output| 29; 14 -->|output| 29; 28 -->|nucleotide_mutation_scores| 29; 19 -->|classifier_coefficients| 29; 18 -->|output| 29; 3["ℹ️ Input Dataset\ncopy_number_gain_status.tsv"]; style 3 stroke:#2c3143,stroke-width:4px; 30["PAPAA: PanCancer targene pharmacology"]; 16 -->|output| 30; 29 -->|gdsc1_ccle_targene_pharmacology_predictions| 30; 29 -->|gdsc1_targene_pharmacology_predictions| 30; 29 -->|gdsc2_ccle_targene_pharmacology_predictions| 30; 29 -->|gdsc2_targene_pharmacology_predictions| 30; 4["ℹ️ Input Dataset\nmutation_burden_freeze.tsv"]; style 4 stroke:#2c3143,stroke-width:4px; 5["ℹ️ Input Dataset\nsample_freeze.tsv"]; style 5 stroke:#2c3143,stroke-width:4px; 6["ℹ️ Input Dataset\nmc3.v0.2.8.PUBLIC.maf"]; style 6 stroke:#2c3143,stroke-width:4px; 7["ℹ️ Input Dataset\nCCLE_DepMap_18Q1_maf_20180207.txt"]; style 7 stroke:#2c3143,stroke-width:4px; 8["ℹ️ Input Dataset\ngdsc1_ccle_pharm_fitted_dose_data.txt"]; style 8 stroke:#2c3143,stroke-width:4px; 9["ℹ️ Input Dataset\ngdsc2_ccle_pharm_fitted_dose_data.txt"]; style 9 stroke:#2c3143,stroke-width:4px;
Importing into Galaxy
Below are the instructions for importing these workflows directly into your Galaxy server of choice to start using them!Hands-on: Importing a workflow
- Click on Workflow on the top menu bar of Galaxy. You will see a list of all your workflows.
- Click on galaxy-upload Import at the top-right of the screen
- Provide your workflow
- Option 1: Paste the URL of the workflow into the box labelled “Archived Workflow URL”
- Option 2: Upload the workflow file in the box labelled “Archived Workflow File”
- Click the Import workflow button
Below is a short video demonstrating how to import a workflow from GitHub using this procedure: