Proteomics: MaxQuant and MSstats for the analysis of label-free data

proteomics-maxquant-msstats-dda-lfq/main-workflow

Author(s)

version Version
4
last_modification Last updated
May 8, 2025
license License
None Specified, defaults to CC-BY-4.0
galaxy-tags Tags

Features
Tutorial
hands_on MaxQuant and MSstats for the analysis of label-free data

Workflow Testing
Tests: ❌
Results: Not yet automated
FAIRness purl PURL
https://gxy.io/GTN:W00158
RO-Crate logo with flask Download Workflow RO-Crate Workflowhub cloud with gears logo View on (Dev) WorkflowHub
Launch in Tutorial Mode question
galaxy-download Download
flowchart TD
  0["ℹ️ Input Dataset\nProtein Groups"];
  style 0 stroke:#2c3143,stroke-width:4px;
  1["ℹ️ Input Dataset\nEvidence"];
  style 1 stroke:#2c3143,stroke-width:4px;
  2["ℹ️ Input Dataset\nannotation file"];
  style 2 stroke:#2c3143,stroke-width:4px;
  3["ℹ️ Input Dataset\ncomparison matrix"];
  style 3 stroke:#2c3143,stroke-width:4px;
  4["Select"];
  0 -->|output| 4;
  58469745-c560-4082-9cc4-2a457386b772["Output\nselect protein groups"];
  4 --> 58469745-c560-4082-9cc4-2a457386b772;
  style 58469745-c560-4082-9cc4-2a457386b772 stroke:#2c3143,stroke-width:4px;
  5["Select"];
  1 -->|output| 5;
  cfff2740-c583-4e2d-bf6d-2dc5ecbb69f5["Output\nselect protein evidence"];
  5 --> cfff2740-c583-4e2d-bf6d-2dc5ecbb69f5;
  style cfff2740-c583-4e2d-bf6d-2dc5ecbb69f5 stroke:#2c3143,stroke-width:4px;
  6["Replace Text"];
  4 -->|out_file1| 6;
  aa963300-6a11-4455-a0e2-17cb68483426["Output\nprotein groups input for MSstats"];
  6 --> aa963300-6a11-4455-a0e2-17cb68483426;
  style aa963300-6a11-4455-a0e2-17cb68483426 stroke:#2c3143,stroke-width:4px;
  7["Replace Text"];
  5 -->|out_file1| 7;
  b746188c-8a93-4d78-9379-2ed054a136d2["Output\nevidence input for MSstats"];
  7 --> b746188c-8a93-4d78-9379-2ed054a136d2;
  style b746188c-8a93-4d78-9379-2ed054a136d2 stroke:#2c3143,stroke-width:4px;
  8["MSstats"];
  3 -->|output| 8;
  2 -->|output| 8;
  7 -->|outfile| 8;
  6 -->|outfile| 8;
  9["Summary Statistics"];
  8 -->|proteinlevel_data| 9;
  10["Replace Text"];
  8 -->|quant_sample_matrix| 10;
  9dff3f51-ec15-4737-ac31-4af0bbce163e["Output\nreplaced sample quantification matrix"];
  10 --> 9dff3f51-ec15-4737-ac31-4af0bbce163e;
  style 9dff3f51-ec15-4737-ac31-4af0bbce163e stroke:#2c3143,stroke-width:4px;
  11["Replace Text"];
  8 -->|comparison_result| 11;
  c69337e8-a296-4b01-b439-e41d7a397099["Output\nreplaced comparison result"];
  11 --> c69337e8-a296-4b01-b439-e41d7a397099;
  style c69337e8-a296-4b01-b439-e41d7a397099 stroke:#2c3143,stroke-width:4px;
  12["Datamash"];
  8 -->|proteinlevel_data| 12;
  13["Filter"];
  11 -->|outfile| 13;
  ef566712-0057-4d2e-8b66-fca422b71031["Output\nsignificant proteins"];
  13 --> ef566712-0057-4d2e-8b66-fca422b71031;
  style ef566712-0057-4d2e-8b66-fca422b71031 stroke:#2c3143,stroke-width:4px;
  14["Filter"];
  13 -->|out_file1| 14;
  81583c93-be46-4b0a-8b8f-43f1c700c900["Output\nmetastasized filtered"];
  14 --> 81583c93-be46-4b0a-8b8f-43f1c700c900;
  style 81583c93-be46-4b0a-8b8f-43f1c700c900 stroke:#2c3143,stroke-width:4px;
  15["Filter"];
  13 -->|out_file1| 15;
  dfe7380c-7b63-4381-84d4-08f225a165c6["Output\nrdeb filtered"];
  15 --> dfe7380c-7b63-4381-84d4-08f225a165c6;
  style dfe7380c-7b63-4381-84d4-08f225a165c6 stroke:#2c3143,stroke-width:4px;
  16["Filter"];
  14 -->|out_file1| 16;
  a83ef0a1-d7b6-43b2-be66-394e6b5af4b0["Output\nsignificant metastasized"];
  16 --> a83ef0a1-d7b6-43b2-be66-394e6b5af4b0;
  style a83ef0a1-d7b6-43b2-be66-394e6b5af4b0 stroke:#2c3143,stroke-width:4px;
  17["Filter"];
  15 -->|out_file1| 17;
  bbafbb4f-7d4a-43aa-9a47-078f5c946ff5["Output\nsignificant rdeb"];
  17 --> bbafbb4f-7d4a-43aa-9a47-078f5c946ff5;
  style bbafbb4f-7d4a-43aa-9a47-078f5c946ff5 stroke:#2c3143,stroke-width:4px;
  18["Cut"];
  16 -->|out_file1| 18;
  4b9eed6a-3316-41e8-ad1a-f6252bca9888["Output\nmetastasized cut"];
  18 --> 4b9eed6a-3316-41e8-ad1a-f6252bca9888;
  style 4b9eed6a-3316-41e8-ad1a-f6252bca9888 stroke:#2c3143,stroke-width:4px;
  19["Cut"];
  17 -->|out_file1| 19;
  4a99a360-9afc-4358-bed1-ed3a10aa1310["Output\nrdeb cut"];
  19 --> 4a99a360-9afc-4358-bed1-ed3a10aa1310;
  style 4a99a360-9afc-4358-bed1-ed3a10aa1310 stroke:#2c3143,stroke-width:4px;
  20["Join"];
  10 -->|outfile| 20;
  18 -->|out_file1| 20;
  f5759e17-57b3-4ca7-b09a-172fdcc0aa21["Output\nmetastasized join"];
  20 --> f5759e17-57b3-4ca7-b09a-172fdcc0aa21;
  style f5759e17-57b3-4ca7-b09a-172fdcc0aa21 stroke:#2c3143,stroke-width:4px;
  21["Join"];
  10 -->|outfile| 21;
  19 -->|out_file1| 21;
  f8de348d-f22c-47e9-8899-40e525c51966["Output\nrdeb join"];
  21 --> f8de348d-f22c-47e9-8899-40e525c51966;
  style f8de348d-f22c-47e9-8899-40e525c51966 stroke:#2c3143,stroke-width:4px;
  22["UniProt"];
  20 -->|output| 22;
  0a40e034-7710-4a02-9950-98baa4b4a7cf["Output\nmetastasized uniprot"];
  22 --> 0a40e034-7710-4a02-9950-98baa4b4a7cf;
  style 0a40e034-7710-4a02-9950-98baa4b4a7cf stroke:#2c3143,stroke-width:4px;
  23["heatmap2"];
  20 -->|output| 23;
  02709f6c-fffe-416e-a76d-ff03c1eb5bc4["Output\nUpregulated proteins in metastasized cSCC"];
  23 --> 02709f6c-fffe-416e-a76d-ff03c1eb5bc4;
  style 02709f6c-fffe-416e-a76d-ff03c1eb5bc4 stroke:#2c3143,stroke-width:4px;
  24["heatmap2"];
  21 -->|output| 24;
  690b708f-52d6-4caf-b20f-2a464fbd798e["Output\nUpregulated proteins in RDEB cSCC"];
  24 --> 690b708f-52d6-4caf-b20f-2a464fbd798e;
  style 690b708f-52d6-4caf-b20f-2a464fbd798e stroke:#2c3143,stroke-width:4px;
  25["UniProt"];
  21 -->|output| 25;
  33419abf-0efa-4a28-8cab-d28f645ea2c3["Output\nrdeb uniprot"];
  25 --> 33419abf-0efa-4a28-8cab-d28f645ea2c3;
  style 33419abf-0efa-4a28-8cab-d28f645ea2c3 stroke:#2c3143,stroke-width:4px;
  26["FASTA-to-Tabular"];
  22 -->|outfile_retrieve_fasta| 26;
  27["FASTA-to-Tabular"];
  25 -->|outfile_retrieve_fasta| 27;

Inputs

Input Label
Input dataset Protein Groups
Input dataset Evidence
Input dataset annotation file
Input dataset comparison matrix

Outputs

From Output Label
Grep1 Select
Grep1 Select
toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_replace_in_column/9.5+galaxy0 Replace Text
toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_replace_in_column/9.5+galaxy0 Replace Text
toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_replace_in_column/9.5+galaxy0 Replace Text
toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_replace_in_column/9.5+galaxy0 Replace Text
Filter1 Filter
Filter1 Filter
Filter1 Filter
Filter1 Filter
Filter1 Filter
Cut1 Cut
Cut1 Cut
toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_easyjoin_tool/9.5+galaxy0 Join
toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_easyjoin_tool/9.5+galaxy0 Join
toolshed.g2.bx.psu.edu/repos/bgruening/uniprot_rest_interface/uniprot/0.5 UniProt
toolshed.g2.bx.psu.edu/repos/iuc/ggplot2_heatmap2/ggplot2_heatmap2/3.2.0+galaxy1 heatmap2
toolshed.g2.bx.psu.edu/repos/iuc/ggplot2_heatmap2/ggplot2_heatmap2/3.2.0+galaxy1 heatmap2
toolshed.g2.bx.psu.edu/repos/bgruening/uniprot_rest_interface/uniprot/0.5 UniProt

Tools

Tool Links
Cut1
Filter1
Grep1
Summary_Statistics1
toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_easyjoin_tool/9.5+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_replace_in_column/9.5+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/bgruening/uniprot_rest_interface/uniprot/0.5 View in ToolShed
toolshed.g2.bx.psu.edu/repos/devteam/fasta_to_tabular/fasta2tab/1.1.1 View in ToolShed
toolshed.g2.bx.psu.edu/repos/galaxyp/msstats/msstats/4.0.0+galaxy1 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/datamash_ops/datamash_ops/1.8+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/ggplot2_heatmap2/ggplot2_heatmap2/3.2.0+galaxy1 View in ToolShed

To use these workflows in Galaxy you can either click the links to download the workflows, or you can right-click and copy the link to the workflow which can be used in the Galaxy form to import workflows.

Importing into Galaxy

Below are the instructions for importing these workflows directly into your Galaxy server of choice to start using them!
Hands On: Importing a workflow
  1. Click on galaxy-workflows-activity Workflows in the Galaxy activity bar (on the left side of the screen, or in the top menu bar of older Galaxy instances). You will see a list of all your workflows
  2. Click on galaxy-upload Import at the top-right of the screen
  3. Provide your workflow
    • Option 1: Paste the URL of the workflow into the box labelled “Archived Workflow URL”
    • Option 2: Upload the workflow file in the box labelled “Archived Workflow File”
  4. Click the Import workflow button

Below is a short video demonstrating how to import a workflow from GitHub using this procedure:

Video: Importing a workflow from URL

Version History

Version Commit Time Comments
4 f0f3aee9d 2025-05-05 18:02:26 Update tutorial
3 e1daddc51 2021-06-04 05:26:15 fixing broken boxes, adjusting results for actual set MSstats parameters
2 0463f30a6 2021-06-03 12:22:34 changed Maxquant parameters and removed middle part of training
1 ae8154eef 2021-02-17 11:59:25 Adding new maxquant msstats tutorial

For Admins

Installing the workflow tools

wget https://training.galaxyproject.org/training-material/topics/proteomics/tutorials/maxquant-msstats-dda-lfq/workflows/main_workflow.ga -O workflow.ga
workflow-to-tools -w workflow.ga -o tools.yaml
shed-tools install -g GALAXY -a API_KEY -t tools.yaml
workflow-install -g GALAXY -a API_KEY -w workflow.ga --publish-workflows