Statistics and machine learning

Statistical Analyses for omics data and machine learning using Galaxy tools

Material

You can view the tutorial materials in different languages by clicking the dropdown icon next to the slides (slides) and tutorial (tutorial) buttons below.

Machine Learning

Tutorials introducing fundamental concepts and techniques, guiding learners through data preprocessing, model training, evaluation, and application.

Lesson Slides Hands-on Recordings Input dataset Workflows
Foundational Aspects of Machine Learning using Python

Generative Artificial Intelligence and Large Langage Model

Tutorials covering the creation, pretraining, and applications of Generative Artificial Intelligence and Large Language Models.

Lesson Slides Hands-on Recordings Input dataset Workflows
Pretraining a Large Language Model (LLM) from Scratch on DNA Sequences
Fine-tuning a LLM for DNA Sequence Classification
Predicting Mutation Impact with Zero-shot Learning using a pretrained DNA LLM
Generating Artificial Yeast DNA Sequences using a DNA LLM

Other

Assorted Tutorials

Lesson Slides Hands-on Recordings Input dataset Workflows
A Docker-based interactive Jupyterlab powered by GPU for artificial intelligence in Galaxy
Age prediction using machine learning
Basics of machine learning
Building the LORIS LLR6 PanCancer Model Using PyCaret
Classification in Machine Learning
Clustering in Machine Learning
Deep Learning (Part 1) - Feedforward neural networks (FNN)
Deep Learning (Part 2) - Recurrent neural networks (RNN)
Deep Learning (Part 3) - Convolutional neural networks (CNN)
Fine tune large protein model (ProtTrans) using HuggingFace
Image classification in Galaxy with fruit 360 dataset
Interval-Wise Testing for omics data
Introduction to Machine Learning using R
Introduction to deep learning
Machine learning: classification and regression
PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis
Regression in Machine Learning
Supervised Learning with Hyperdimensional Computing
Text-mining with the SimText toolset
Train and Test a Deep learning image classifier with Galaxy-Ludwig
Regulations/standards for AI using DOME

Frequently Asked Questions

Common questions regarding this topic have been collected on a dedicated FAQ page . Common questions related to specific tutorials can be accessed from the tutorials themselves.

Follow topic updates rss-feed with our RSS Feed

Community Resources

Community Home Maintainer Home

Editorial Board

This material is reviewed by our Editorial Board:

Marzia A Cremona avatar Marzia A Cremonaorcid logoFabio Cumbo avatar Fabio CumboAnup Kumar avatar Anup Kumar

Contributors

This material was contributed to by:

Vijay avatar VijayAnup Kumar avatar Anup KumarKaivan Kamali avatar Kaivan Kamaliorcid logoMarie Gramm avatar Marie GrammMélanie Petera avatar Mélanie Peteraorcid logoTeresa Müller avatar Teresa MüllerEkaterina Polkh avatar Ekaterina Polkhorcid logoArmin Dadras avatar Armin Dadrasorcid logoFabio Cumbo avatar Fabio CumboRaphael Mourad avatar Raphael Mouradorcid logoBjörn Grüning avatar Björn Grüningorcid logoPaulo Cilas Morais Lyra Junior avatar Paulo Cilas Morais Lyra Juniororcid logoHelena Rasche avatar Helena RascheMarzia A Cremona avatar Marzia A Cremonaorcid logoAlireza Khanteymoori avatar Alireza Khanteymooriorcid logoMichelle Terese Savage avatar Michelle Terese Savageorcid logoFotis E. Psomopoulos avatar Fotis E. Psomopoulosorcid logoAnthony Bretaudeau avatar Anthony Bretaudeauorcid logoSaskia Hiltemann avatar Saskia Hiltemannorcid logoBérénice Batut avatar Bérénice Batutorcid logoStella Fragkouli avatar Stella Fragkouliorcid logoMartin Čech avatar Martin Čechorcid logoJeremy Goecks avatar Jeremy Goecksorcid logoNate Coraor avatar Nate CoraorSimon Bray avatar Simon BrayWandrille Duchemin avatar Wandrille DucheminGildas Le Corguillé avatar Gildas Le CorguilléDennis Lal group avatar Dennis Lal grouporcid logoDaniel Blankenberg avatar Daniel Blankenbergorcid logoJunhao Qiu avatar Junhao QiuRalf Gabriels avatar Ralf Gabriels

Funding

These individuals or organisations provided funding support for the development of this resource