GTN Materials Search

We are testing a new search experience. It does not do semantic ranking of results, but it's maybe a nicer and faster interface. In the future we might bring back the ranking of results. If you wish to access the old search interface, it will remain available here.

Tell us what you think!

Identifier Type Title Topic Level Length
purlGTN:N00089 News GTN Video Library 2.0: 107 hours of learning across 154 videos
gtncontributingteachingcommunity
purlGTN:N00075 News New Learning Pathway for FAIR Data Management developed by ELIXIR-UK Data Stewardship Fellows and Experts
fairdmpdata stewardshipdata managementnew learning pathway
purlGTN:N00073 News Lost in a topic? Try a Learning Pathway!
gtn infrastructurenew feature
purlGTN:N00047 News New Feature: Learning Pathways!
new featurecontributing
purlGTN:F00189 FAQs Running Ansible on your remote machine
Galaxy Server administration
purlGTN:F00084 FAQs Learning with RMarkdown in RStudio
Galaxy FAQ
TBA Slides Introduction to Synthetic Biology
Synthetic Biology
TBA Slides Galaxy from a developer point of view
Development in Galaxy
TBA Slides Introduction to Muon Spectroscopy
Materials Science
purlGTN:F00213 FAQs Defining a Learning Pathway
Contributing to the Galaxy Training Material
TBA FAQs How do I manage my Galaxy storage?
Galaxy FAQ
TBA FAQs How do I manage my repositories on Galaxy?
Galaxy FAQ
purlGTN:F00358 FAQs Preparing materials for asynchronous learning: CYOA
Contributing to the Galaxy Training Material
purlGTN:F00359 FAQs Preparing materials for asynchronous learning: FAQs
Contributing to the Galaxy Training Material
purlGTN:F00360 FAQs Preparing materials for asynchronous learning: Self-Study
Contributing to the Galaxy Training Material
purlGTN:F00361 FAQs Preparing materials for asynchronous learning: Tips
Contributing to the Galaxy Training Material
purlGTN:S00137 Slides Regression in Machine Learning
Statistics and machine learning
purlGTN:S00136 Slides Introduction to Machine learning
Statistics and machine learning
purlGTN:S00132 Slides Foundational Aspects of Machine Learning
elixirai-ml
Statistics and machine learning
purlGTN:S00129 Slides Deep Learning (without Generative Artificial Intelligence) using Python
elixirai-ml
Statistics and machine learning
purlGTN:S00089 Slides Feedforward neural networks (FNN) Deep Learning - Part 1
Statistics and machine learning
purlGTN:S00134 Slides Classification in Machine Learning
Statistics and machine learning
purlGTN:S00088 Slides Convolutional neural networks (CNN) Deep Learning - Part 3
Statistics and machine learning
purlGTN:S00090 Slides Recurrent neural networks (RNN) Deep Learning - Part 2
Statistics and machine learning
TBA Slides Lorum Ipsum
testpagelanguage
Introductory 42M
TBA Slides Introducción al análisis de datos de scRNA-seq
single-cell
Single Cell 30m
TBA Slides Una breve introducción a Galaxy
Introduction to Galaxy Analyses
TBA Slides Lorum Ipsum
testpagelanguage
Introductory 42M
TBA Slides Una introducción al análisis de datos scRNA-seq
single-cell
Single Cell Intermediate 30m
TBA Slides Una Breve Introducción a Galaxy
Introduction to Galaxy Analyses
TBA Slides Lorum Ipsum
testpagelanguage
Introductory 42M
TBA Slides Lorum Ipsum
testpagelanguage
Intermediate 42M
TBA Hands-on Setting up a dev Onedata instance
storage
Development in Galaxy Introductory 20m
purlGTN:T00067 Hands-on Principles of learning and how they apply to training and teaching
elixirtrain-the-trainers
Contributing to the Galaxy Training Material 2h
TBA Hands-on Preview the GTN website as you edit your training material
Choose your own AdventureGitPodCodeSpacesCommand-line
Contributing to the Galaxy Training Material 20m
TBA Hands-on Contributing to the Galaxy Training Network with GitHub
Contributing to the Galaxy Training Material 30m
purlGTN:T00465 Hands-on FAIR-by-Design methodology
FAIR-by-Design Learning MaterialsFAIR Learning ObjectsFAIR-by-Design Methodologywork-in-progress
Contributing to the Galaxy Training Material Introductory 20M
TBA Hands-on Dataset construction for bacterial comparative genomics
microgalaxywork-in-progress
Genome Annotation Introductory 1H
TBA Hands-on Bacterial pangenomics
Genome Annotation Introductory 1H
TBA Hands-on Genome annotation with Braker3
eukaryotaBraker3jbrowse1
Genome Annotation Intermediate 8h
TBA Hands-on Bacterial genome quality control
microgalaxywork-in-progress
Genome Annotation Introductory 1H
TBA Hands-on Primer and primer scheme design for pan-specific detection and sequencing of viral pathogens across genotypes
virology
Sequence analysis Introductory 1H
TBA Hands-on Identification and Evolutionary Analysis of Transcription-Associated Proteins in Streptophyte algae and Land plants
plants
Sequence analysis 2H
TBA Hands-on Regulations/standards for AI using DOME
elixirai-mlwork-in-progressjupyter-notebook
Statistics and machine learning Intermediate 3H
TBA Hands-on Generative Artificial Intelligence and Large Langage Model using Python
elixirai-mlwork-in-progressjupyter-notebook
Statistics and machine learning Intermediate 3H
purlGTN:T00263 Hands-on Machine learning: classification and regression
Statistics and machine learning 1H
purlGTN:T00271 Hands-on Regression in Machine Learning
Statistics and machine learning 2H
purlGTN:T00270 Hands-on Basics of machine learning
Statistics and machine learning 30M
TBA Hands-on Foundational Aspects of Machine Learning using Python
elixirai-mlwork-in-progressjupyter-notebook
Statistics and machine learning Intermediate 3H
purlGTN:T00267 Hands-on Introduction to Machine Learning using R
interactive-tools
Statistics and machine learning Intermediate 3H
purlGTN:T00442 Hands-on Fine tune large protein model (ProtTrans) using HuggingFace
interactive-toolsmachine-learningdeep-learningjupyter-labfine-tuningdephosphorylation-site-prediction
Statistics and machine learning 1H
TBA Hands-on Deep Learning (without Generative Artificial Intelligence) using Python
elixirai-mlwork-in-progressjupyter-notebook
Statistics and machine learning Intermediate 3H
purlGTN:T00258 Hands-on Deep Learning (Part 1) - Feedforward neural networks (FNN)
Statistics and machine learning 2H
purlGTN:T00262 Hands-on Classification in Machine Learning
Statistics and machine learning 2H
purlGTN:T00261 Hands-on Age prediction using machine learning
Statistics and machine learning 2H
purlGTN:T00260 Hands-on PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis
Machine learningPan-cancercancer biomarkersoncogenes and tumor suppressor genes
Statistics and machine learning 1H30M
purlGTN:T00257 Hands-on Deep Learning (Part 3) - Convolutional neural networks (CNN)
Statistics and machine learning 2H
purlGTN:T00467 Hands-on Train and Test a Deep learning image classifier with Galaxy-Ludwig
MNISTDeep learningLudwig
Statistics and machine learning Intermediate 40M
TBA Hands-on Text-Mining Differences in Chinese Newspaper Articles
HumanitiesText_mining
Statistics and machine learning Introductory 1H
purlGTN:T00337 Hands-on Supervised Learning with Hyperdimensional Computing
Statistics and machine learning Intermediate 30m
purlGTN:T00259 Hands-on Deep Learning (Part 2) - Recurrent neural networks (RNN)
Statistics and machine learning 2H
purlGTN:T00268 Hands-on Introduction to deep learning
Statistics and machine learning 1H
purlGTN:T00266 Hands-on A Docker-based interactive Jupyterlab powered by GPU for artificial intelligence in Galaxy
interactive-toolsmachine-learningdeep-learningjupyter-labimage-segmentationprotein-3D-structure
Statistics and machine learning 1H
TBA Hands-on Neural networks using Python
elixirai-mlwork-in-progressjupyter-notebook
Statistics and machine learning Intermediate 3H
purlGTN:T00264 Hands-on Clustering in Machine Learning
Statistics and machine learning 2H
TBA Hands-on Building the LORIS LLR6 PanCancer Model Using PyCaret
LORIS Score ModelMachine LearningPyCaret
Statistics and machine learning Intermediate 1H
TBA Hands-on Overview of the Galaxy OMERO-suite - Upload images and metadata in OMERO using Galaxy
Imaging Intermediate 1H
TBA Hands-on Quantification of single-molecule RNA fluorescence in situ hybridization (smFISH) in yeast cell lines
RNAsmFISHbioimaging
Imaging Introductory 30m
TBA Hands-on Collaboration with JupyterGIS
Climate 30M
TBA Hands-on Clustering 3K PBMCs with Seurat
10x
Single Cell Introductory 8H
TBA Hands-on Evaluating Reference Data for Bulk RNA Deconvolution
transcriptomics
Single Cell 2H
TBA Hands-on Pseudobulk Analysis with Decoupler and EdgeR
transcriptomicspseudobulk
Single Cell 3H
TBA Hands-on Multi-sample batch correction with Harmony and SnapATAC2
10xepigenetics
Single Cell Intermediate 4H
TBA Hands-on Importing (uploading) data from Onedata
storage
Using Galaxy and Managing your Data Introductory 15m
TBA Hands-on Exporting to Onedata remote
storage
Using Galaxy and Managing your Data Introductory 5m
TBA Hands-on Getting started with Onedata distributed storage
storage
Using Galaxy and Managing your Data Introductory 20m
TBA Hands-on Onedata user-owned storage
storage
Using Galaxy and Managing your Data Introductory 15m
TBA Hands-on Neoantigen 5: Variant Annotation
label-free
Proteomics 3H
TBA Hands-on Neoantigen 1: Fusion-Database-Generation
label-free
Proteomics 2H
TBA Hands-on Single Cell Proteomics data analysis with bioconductor-scp
Proteomics 3H
TBA Hands-on Neoantigen 6: Predicting HLA Binding
label-free
Proteomics 3H
TBA Hands-on Neoantigen 3: Database merge and FragPipe discovery
label-free
Proteomics 3H
TBA Hands-on Neoantigen 4: PepQuery2 Verification
label-free
Proteomics 3H
TBA Hands-on Neoantigen 7: IEDB binding PepQuery Validated Neopeptides
label-free
Proteomics 3H
purlGTN:T00225 Hands-on Machine Learning Modeling of Anticancer Peptides
MLcancer
Proteomics Intermediate 30m
TBA Hands-on Neoantigen 2: Non-Reference-Database-Generation
label-free
Proteomics 3H
TBA Hands-on Multiomics data analysis using MultiGSEA
multi-omicstranscriptomicsproteomicsmetabolomics
Proteomics 1H
TBA Hands-on Phylogenetic analysis for bacterial comparative genomics
microgalaxywork-in-progress
Evolution Introductory 1H
TBA Hands-on Configuring the Onedata connectors (remotes, Object Store, BYOS, BYOD)
storage
Galaxy Server administration Intermediate 40m
TBA Hands-on Galaxy usage on SURF Research Cloud
deploying
Galaxy Server administration Introductory 30m
TBA Hands-on Adding file-sources to Galaxy
earth-systemoceandatawork-in-progress
Galaxy Server administration 15m
TBA Hands-on Pulsar usage on SURF Research Cloud
deploying
Galaxy Server administration Introductory 30m
TBA Hands-on Query an annotated mobile genetic element database to identify and annotate genetic elements (e.g. plasmids) in metagenomics data
Microbiome Introductory 1H
TBA Hands-on Creating community content
Galaxy Community Building 30M
TBA Hands-on Cleaning GBIF data using OpenRefine
Ecology 0h45m
TBA Hands-on Data submission using ENA upload Tool
Ecology 2h
TBA Hands-on Python - Warm-up for statistics and machine learning
elixirai-mlwork-in-progressjupyter-notebook
Foundations of Data Science Introductory 1H
purlGTN:T00359 Hands-on Learning about one gene across biological resources and formats
Foundations of Data Science Introductory 1H
TBA Hands-on Generación de una matriz de datos de secuenciación de ARN de células únicas utilizando Alevin
single-cell10xpaper-replicationtranscriptomics
Single Cell Advanced 3H
TBA Hands-on Generación de una matriz de datos de secuenciación de ARN de células únicas utilizando Alevin
single-cell10xpaper-replicationtranscriptomics
Single Cell Advanced 3H
TBA Hands-on Filtrado, representación y exploración de secuenciación de ARN de células únicas
single-cell10xpaper-replicationinteractive-toolstranscriptomics
Single Cell Advanced 3H
TBA Hands-on Breve introducción a Galaxy - en español
Introduction to Galaxy Analyses Introductory 30m
TBA Hands-on Production d'indicateurs champs de bloc
Ecology 1H
purlGTN:F00356 FAQs What is a Learning Pathway?
GTN FAQ
purlGTN:W00223 Workflow Clustering in Machine Learning
Statistics and machine learning
purlGTN:W00228 Workflow Machine Learning
Statistics and machine learning
purlGTN:W00226 Workflow Intro_To_Deep_Learning
Statistics and machine learning
TBA Workflow Metagenomics assembly tutorial workflow
Assembly
TBA Workflow workflow-generate-dataset-for-assembly-tutorial
Assembly
TBA Workflow WF2_Discovery-Workflow
Microbiome
TBA Workflow WF3_VERIFICATION_WORKFLOW
Microbiome
TBA Workflow WF4_Quantitation_Workflow
Microbiome
TBA Workflow WF1_Database_Generation_Workflow
Microbiome
TBA Workflow WF5_Data_Interpretation_Worklow
Microbiome
TBA Workflow Data management in Medicinal Chemistry workflow
FAIR Data, Workflows, and Research
TBA Workflow GTN Tutorial: Data manipulation Olympics - all steps and exercises
Foundations of Data Science